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Abstract-An elastic~plasticcrack growth model, with a traction~separation law specified on the
crack plane to characterize the fracture process, is used to study the effect of the non-singular T­
stress, acting parallel to the crack plane. The work of separation per unit area and the peak normal
stress are the two main parameters used to characterize the fracture process, and crack growth
resistance curves are calculated numerically for a number of values of the peak stress to initial yield
stress ratio, and for different levels of strain hardening. Small-scale yielding in plane strain is
considered with the remote field specified by a constant value of the T-stress, applied initially, and
an increasing magnitude of the mode I stress intensity factor. It is shown that the predicted T-stress
dependence of the fracture toughness during crack growth is qualitatively similar to experimental
observations, even though the experiments go beyond small-scale yielding.

1. INTRODUCTION

The effect of crack-tip constraint on fracture toughness of ductile materials has attracted a
great deal ofinterest recently. Thus, starting from conditions ofsmall-scale yielding Betegon
and Hancock (1991) and Du and Hancock (1991) have studied the effect of the non-singular
stress term T, acting parallel to the crack plane, on elastic-plastic crack-tip fields. They
found that J-dominance is maintained for zero or positive T-stresses, while negative T­
stresses cause loss of J-dominance of the plastic crack-tip fields. The significant influence
of the T-stress on the shape and size of the plastic zone which develops at the crack-tip has
been demonstrated earlier by Larsson and Carlsson (1973) and Rice (1974). Hancock et
al. (1991) have tested a wide range of through-cracked geometries of an ASTM 710 grade
A steel and have correlated the geometry dependence ofcrack extension in plane strain with
the crack-tip constraint as parameterized by the T-stress, with an approximate extension of
that measure in fully plastic conditions. O'Dowd and Shih (1991, 1992) have studied a two­
term expansion of the plastic crack-tip fields with the first term characterized by the applied
J and with an amplitude Q of the second term. It is argued by O'Dowd and Shih (1992)
that the J-Q approach is preferable under fully yielded conditions, where the T-stress is not
so clearly defined.

For a ductile solid subject to mode I plane strain crack growth Tvergaard and Hut­
chinson (1992) have computed crack growth resistance curves to determine the effect of
plastic dissipation on fracture toughness. In this study the fracture process is represented
in terms of a traction-separation law in which the primary parameters are the work of
separation per unit area, r 0, and the peak traction, a. In the absence of plasticity the value
of the stress intensity factor needed to advance the crack corresponds directly to the work
of fracture per unit area, r 0, but the computations show that a plastic zone moving with
the crack-tip can increase the fracture toughness by a significant factor, dependent mainly
on the peak traction to initial yield stress ratio, ajay, and the strain hardening exponent,
N. The model describes the role of plasticity for the interface toughness of similar materials
bonded together, but is also relevant to studies of crack growth in a homogeneous material
by various failure mechanisms, including void growth and coalescence in a certain range
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of parameters. A similar cohesive zone model has been used by Tvergaard and Hutchinson
(1993) to analyse the mixed mode toughness for a crack growing along an interface joining
an elastic-plastic solid to a solid which does not yield plastically. Both these studies focus
on small-scale yielding in plane strain with the remote elastic field specified by the mode I
stress intensity factor or the magnitude and phase of the mixed mode stress intensity factors.

In the present paper the results for mode I crack growth resistance in a homogeneous
material (Tvergaard and Hutchinson, 1992) are extended to account for the effect of a non­
zero T-stress. The cohesive zone model is identical to that used in our previous study, and
the assumption of small-scale yielding is maintained. The predicted T-stress dependence of
the fracture toughness during crack growth is qualitatively similar to the dependence
observed experimentally, especially in the careful study of Hancock et al. (1991). For
reasons discussed at length at the end of the paper, no attempt has been made to accurately
simulate the material these authors tested.

2. PROBLEM FORMULATION

In the case of an elastic solid the Griffith criterion for crack growth is '§ = r 0, where
'§ is the energy release rate as calculated for a line crack using elasticity theory and r 0 is
the work of separation per unit area required to create the two crack surfaces. However,
when plastic yielding takes place around the crack-tip, the crack growth resistance, r R(~a),

exceeds r 0 and grows with increasing crack extension ~a until a steady-state value r~ is
reached. For small-scale yielding in plane strain mode I the critical value of the energy
release rate may be expressed in terms of the stress intensity factor K, so that the resistance
curve takes the form

(1)

where KR = [ErR/(1- v2)] 1(2, V is Poisson's ratio, and E is Young's modulus. Such resist­
ance curves for a homogeneous elastic-plastic material were calculated by Tvergaard and
Hutchinson (1992) based on a cohesive zone representation ofthe fracture process. The same
cohesive zone and elastic-plastic material formulations are used in the present analyses.

The traction-separation relation used to model the fracture process is shown in Fig.
I. The work of separation per unit area is:

(2)

This separation law is fully specified by r o, a, b1/bc and b2/b" where the latter two
parameters are shape parameters.

a

Aa

S6e10= 0 adli

lie
Fig. 1. Traction-separation relation for fracture process.
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The elastic-plastic solid has an initial tensile yield stress, O'y, and a true stress­
logarithmic strain curve in uniaxial tension specified by

forO'~O'y

forO' ~ O'y.
(3)

The tensile behaviour is generalized to multiaxial stress states assuming isotropic hardening
and using the von Mises yield surface. Thus, the continuum behaviour of the solid is
characterized by the set of parameters E, v, 0' y and N.

Finite strains are accounted for in the analysis, using a convected coordinate, Lagrang­
ian formulation of the field equations, in which gij and Guare metric tensors in the reference
configuration and the current configuration, respectively, with determinants 9 and G, and
rfij = ~(Gij-glj) is the Lagrangian strain tensor. The contravariant components iY of the
Kirchhoff stress tensor on the current base vectors are related to the components of the
Cauchy stress tensor O'u by iY = JG!9O'u. Then, in the finite-strain generalization of
J 2-ftow theory discussed by Hutchinson (1973), the incremental stress-strain relationship
is of the form i:ij = Lijkl~kJ' with the tensor of instantaneous moduli given by

Here, the effective von Mises stress is O't = (3susij/2) 1/2, sij = r U- GUrZ!3 is the stress
deviator, and the value of f3 is I or 0 for plastic yielding or elastic unloading, respectively.
Furthermore, E1 is the slope of the true stress vs natural strain curve (3) at the stress level

The plane strain mode I crack growth analyses are carried out for conditions of small­
scale yielding. Due to symmetry about the crack plane only half of the solid needs to· be
analysed, and the numerical computations are carried out for a semicircular region with
initial radius A o, as shown in Fig. 2. The xl-axis is in the crack plane and the initial crack­
tip is located at Xl = x 2 = O. The traction-separation relation used to model the fracture
process (see Fig. I) is specified everywhere on the boundary Xl> 0, x 2 = 0 of the region
analysed, while zero tractions are specified for x I ~ 0, x 2 = O. It is noted that the stress 0'

used in the traction-separation relation (Fig. I) is defined as a true stress. This is important
in cases where crack-tip blunting starts to occur; but in most of the present computations
the strains remain rather small, so that applying true stresses or nominal stresses in the
traction-separation relationship would not make a great deal of difference.

According to the small strain linear elastic solution the in-plane stress components
near the crack-tip are of the form

K
O'~p = r;;=J.p(O) + T~I~~IP'

y2nr
(5)

where (r,O) are polar coordinates and ~ij is Kronecker's delta. For mode I loading, K is
the amplitude ofthe singular stress field, while T is a non-singular stress term, acting parallel
to the crack plane. In the present analyses the T-stress is applied first, together with the
corresponding transverse stress 0'33 = vT under plane strain conditions. Subsequently,
additional displacements are specified on the outer semicircular boundary according to the
singular K-field solution around the crack-tip. Thus, the uniform T-stress field applied
initially is below the yield limit, and the additional loading is applied by incrementally
increasing the amplitude K for the displacements on the semicircular boundary. At some
stages of the deformation the value of the J-integral is calculated on a number of contours
around the crack-tip to check agreement with the prescribed amplitude K of the edge
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Fig. 2. Finite element mesh. (a) Full mesh. (b) Refined mesh along the crack line.

displacements. Very good agreement is found in the present computations, as long as the
radius A o is chosen to be large enough. The independence of J on the value of T has been
ensured by choosing this large outer radius.

The numerical analyses follow the scheme discussed in more detail by Tvergaard and
Hutchinson (1992). Approximate solutions are obtained by a linear incremental method
using a finite element approximation of the displacement fields in the incremental version
of the principle of virtual work. The elements used are quadrilaterals each built-up of four
triangular, linear-displacement elements. An example ofthe mesh used for the computations
is shown in Fig. 2, where it is seen that a uniform mesh region with initial length Eo in front
of the initial crack-tip is used to model crack growth. A special Rayleigh-Ritz finite element
method is used to control nodal displacements at the interface within the fracture process
zone [see also Tvergaard (1990)] as is necesary when K has reached the steady-state value
while the crack still grows.

In the uniform mesh region of length Eo in front of the initial crack-tip the length of
one square element is denoted as L\o. The present computations are carried out with
be = O.IL\o, b1/be = 0.15 and b2 /b c = 0.5. The mesh shown in Fig. 2 corresponds to using
Eo = 30L\o and A 0 = 2000L\o ; but most of the computations have been carried out using a
larger mesh with Eo = 60L\o and A o = 40.000L\o, for the same mesh size L\o.

Two reference quantities Ko and R o are introduced for the presentation of the results

(6)

(7)



Effect of T-stress on mode I crack growth resistance 827

Here, Ko represents the mode I stress intensity factor needed to advance the crack when
plastic dissipation is negligible, i.e. the stress intensity factor needed to supply just the work
of the fracture process r o. The reference length Ro scales with the size of the plastic zone
when K ~ Ko. In plane strain small-scale yielding (Kluy)2/(3n) is commonly used to estimate
the size of the plastic zone.

3. RESULTS

The values of the parameters specifying the elastic-plastic material behaviour are taken
to be N = 0.1, uylE = 0.003 and v = 0.3 in most of the computations. The shape parameters
for the traction-separation relation are taken to be {)J!{)c = 0.15 and o21oc = 0.5, while the
remaining two parameters r 0 (or K o) and fJ appear directly in the figures used to present
the predictions of the model.

For the same set of material parameters, in the absence of T-stress (Tluy = 0), it was
found by Tvergaard and Hutchinson (1992) that plasticity gives essentially no contribution
to the total work of fracture if the value of fJlay is less than 2. For fJluy larger than 2 the
effect of plasticity starts to be noticeable, and it was found that increasing the steady-state
work of fracture by a factor larger than 4 (KSSIKo > 2) requires fJ/Uy = 3.4.

Figure 3 shows a number of crack growth resistance curves computed for a negative
value of the T-stress, Tluy = -I. Here, the crack growth resistance, KR(Aa), is normalized
by Ko, and the crack extension is normalized by R o. It is seen that according to the model
applied here crack growth initates at K K o in each case, as was also found in the absence
of T-stress (Tvergaard and Hutchinson, 1992). The resistance K R increases rapidly in the
initial stage of crack growth and then more slowly in a comparatively large interval of
A.a/Ro, until the peak is reached. In fact, for fJluy = 0.9, where the plastic zone is small, the
peak resistance is reached well beyond the maximum crack extension, A.a/Ro= 16, shown
in Fig. 3. The most important difference between the resistance curves found in the absence
of T-stress and those in Fig. 3 for negative T-stress is that, even at values of fJlay much
smaller than 2, the curves in Fig. 3 show a significant contribution of plasticity to the crack
growth resistance.

In Fig. 4 crack growth resistance curves are shown for a fixed value, fJ/Uy = 2.4, of the
peak stress in the traction-separation relation (2), but for different values of the T-stress.
It is seen in Fig. 4 that plasticity essentially has no effect for Tluy = 0; but a negative T­
stress increases the size of the plastic zone and thus also the contribution of plasticity to
the crack growth resistance. As in Fig. 3, crack growth initiates at K = K o, and the resistance
curves increase steeply during the first part of crack growth, while AalRo < 0.2. The value
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Fig. 3. Crack growth resistance curves for Tjay = -1, (lylE = 0.003 and N = 0.1.
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Fig. 4. Crack growth resistance curves for fJ/u y = 2.4, uy/E = 0.003 and N = 0.1.

of the reference length R o is the same for all four curves in Fig. 4, and it is seen that the
amount of crack extension needed to reach the peak crack growth resistance is larger the
larger the effect of plasticity.

It is noted that in a real cracked specimen the values of K and T will increase
simultaneously, whereas in the present computations T is applied first and then kept
constant. However, this is not expected to make any difference at all in the T-dependence
of the steady-state toughness, since the ratio of T and K is fixed incrementally at this limit.
There may be a small effect on the rising part of the R-curve, but the J-argument about
initiation of crack growth at K = Ko is unaffected.

The limiting value of KR attained as the crack grows and approaches a steady-state is
denoted as K ss

• Such limiting values are computed here as the peak values of resistance
curves such as those shown in Figs 3 and 4. Results based on many computations of tl).is
type are plotted in Fig. 5 for different values of the T-stress, as functions of the peak stress
a in the traction-separation relation used to model the fracture process. The curve for
Tjuy = 0 was also shown by Tvergaard and Hutchinson (1992). It is seen in Fig. 5 that the
curve for Tjuy = 0.5 differs very little from that corresponding to zero T-stress, whereas
the curves for negative values of the T-stress differ significantly. Thus, as also noted in
relation to Fig. 3, a negative T-stress allows for a significant effect of plasticity on K ss

/ Ko,
at values of ajuy far below the limit value of 2 determined in the absence of T-stress.
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Fig. 5. Steady-state toughness as a function of (j/Uy, for N = 0.1 and for five levels of the T-stress.
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The sensitivity to changes in the material parameters is investigated by some additional
computations. Thus, for TI(ly = -0.8 results for (lylE = 0.006 are compared with those
for (lylE = 0.003 in Fig. 5. This comparison shows that the results in Fig. 5 are rather
insensitive to the value of (lylE, as was also found by Tvergaard and Hutchinson (1992)
for T = O. It is noted that in the computations for (lylE = 0.006 the mesh size do has been
chosen so that the ratio dolRo is unchanged, to ensure the same numerical resolution
relative to the plastic zone size.

The effect of a higher strain hardening level is shown in Fig. 6 by results for N = 0.2
and (lylE = 0.003. Here, curves of KsslKovs al(ly are shown for three values of the T-stress.
It is seen that the curves for T = 0 and TI(ly = 1 differ rather little, whereas the curve for
TI(ly = -1 shows a much higher steady-state fracture toughness at the same value of al(ly.
Comparing with Fig. 5, it is seen that for otherwise identical material parameters the
increased strain hardening lowers the fracture toughness at all values of TI(ly. The higher
strain hardening increases the tractions ahead of the tip and makes it easier to attain the
peak stress a.

It is clear from previous investigations (Betegon and Hancock, 1991 ; Du and Hancock,
1991; O'Dowd and Shih, 1991, 1992) that in a high constraint situation, for positive T­
stress, the near-tip stress and strain fields are characterized by the HRR-fields, whereas for
negative T-stress there is a breakdown of J-dominance (i.e. the HRR stress levels ahead of
the tip are not attained). It has been shown by these authors that in the high constraint
situation the tensile stresses across the crack line in front of the crack-tip are high, approxi­
mately following the HRR-field prediction. However, as the crack-tip constraint is reduced,
for increasing negative T-stress, the tensile stress level in front of the crack-tip gradually
decays below the level predicted by the HRR-field. Now, in the present paper the tensile
stress level in front of the crack-tip is very important, since it has been found for T = 0
(Tvergaard and Hutchinson, 1992) that the limiting fracture toughness is highly sensitive
to the value of the peak stress a in the traction-separation relation used to model the
fracture process. Thus, when the tensile stress level in front of the crack-tip decays for a
fixed value of a, an increased fracture toughness would be expected, and this is exactly the
result found in Figs 5 and 6. In addition, the size of the plastic zone is larger for a negative
T-stress at a given level of K, and this will also tend to increase the contribution of plastic
dissipation to the steady-state fracture toughness.

Hancock et al. (1991) have carried out a series of experiments for an ASTM 710 grade
A steel, using edge cracked bars, compact tension specimens and centre-cracked panels with
various values of the crack length to specimen width ratio, al w. These different specimen
geometries give rise to a wide range of T-stress levels, and thus the test results show the
effect of crack-tip constraint on the fracture toughness. For all specimens the measured J
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Fig. 6. Steady-state toughness as a function of a/uy, for N = 0.2 and for three levels of the T-stress.
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values are given for t1.a = 0 (back extrapolation of the resistance curve), for t1.a = 200 J.lm
and for t1.a = 400 J.lm. For t1.a = 0, the measured J values show essentially no sensitivity to
the value of the T-stress; but after some crack extension the measured J values show
significant T-stress dependence, so that the fracture toughness increases with increasing
negative value of the T-stress.

The material represented in the present computations is not directly comparable with
that tested by Hancock et al. (1991); but it is noted that qualitatively the present model
results show trends similar to those found in the experiments. Figure 4 represents resistance
curves for a given material (fixed material and fracture parameters) subject to four different
values of T-stress, and it is seen that the values of KR predicted for t1.a = 0 are identical,
whereas after some crack extension the values of K R are significantly higher for large
negative T-stress. The material considered in Fig. 4 is special in that KR / K o remains near
unity for T = 0; but, even though the curves are not continued to large values of Kss/Ko,
Fig. 5 indicates that the trends will be similar for a higher value of the peak stress & in the
fracture process. Thus, for example, for &/ay = 3.4, the predicted resistance curves still
show KR / Ko = 1at t1.a = 0, and all curves show a significant increase of KR / Kofor increasing
t1.a, but clearly the increase is greater the larger the negative T-stress. In comparison, the
experiments of Hancock et al. (1991) show that from t1.a = 0 to t1.a = 400 J.lm the value of
JR increases by a factor around 2.4 for T = 0, whereas JR increases by a factor around 4.2
for T/ay = - 0.75. It is noted that JR increasing by a factor 2.4 corresponds to KR increasing
by a factor 1.55.

4. DISCUSSION

From a qualitative standpoint, the present embedded process-zone model captures the
effect of the T-stress quite realistically, reflecting its potential applicability to deal with the
important effects of constraint, or loss thereof, in ductile fracture. We believe that models
such as the present one have considerable promise as predictive tools for non-linear fracture
mechanics analysis. In principle, there is no barrier to using such models in large-scale
yielding situations with relatively large amounts of crack growth. There is no issue of
identifying a crack-tip parameter to generalize T under large-scale yielding conditions; one
simply computes the history of overall load, displacement and crack length given a sep­
aration law characterizing the fracture process of a given material. There is also no intrinsic
difference in dealing with crack growth initiation and continuing growth with this approach
and, in particular, there is no problem identifying different crack-tip characterizing par­
ameters for stationary and growing cracks. An approach of this kind does require extensive,
relatively sophisticated numerical work using a finite element code, but this is true of
essentially all methods under consideration for highly non-linear fracture applications.
Many of the potential applications of non-linear fracture analysis are of sufficient impor­
tance that the cost of a computational study is not a prohibiting factor.

An approach to applying the embedded process zone model to a non-linear fracture
problem might involve the following steps. The parameters characterizing the continuum
plasticity properties such as ay and N would obviously be chosen to fit tensile stress strain
data for the material in question. The two main parameters characterizing the traction­
separation relation in the present model are r °and CT. These could be regarded as phenom­
enological parameters chosen to fit one set of crack growth data for the material. A
straightforward scheme might identify r °with the initiation value of J (extrapolated back
to zero crack advance) and might select & such that the initial slope of the predicted
resistance curve (i.e. the tearing modulus-see below) coincides with that of the resistance
curve data. Alternatively, r °and & might be chosen to give a best fit of the crack growth
data. In either case, the fitting process would require an analysis of the reference specimen
used to generate the resistance curve data with iteration on &. Then, assuming the traction­
separation law is capable of representing the fracture process in a phenomenological sense,
the model could be used to predict crack growth in the material under both large and small­
scale yielding conditions and under various constraint situations.
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The toughest steels, such as the pressure vessel steel tested by Hancock et al. (1991)
which was mentioned above, have values of Ro which are as large as a centimetre or more.
Higher strength, more brittle steels have values of Ro as small as a fraction of a millimetre.
Thus, depending on the material, the resistance curves in Figs 3 and 4 indicate that steady­
state toughness levels are attained after crack advances ranging from a fraction of a
millimetre for the least tough steels to more than several centimetres for the toughest
materials. Indeed, resistance curve data for the toughest pressure vessel steels show no sign
of attaining steady-state with increases of JR of a factor of ten above JI' (equivalently,
increases of K R a factor of about three above Kr ), corresponding to crack advances on the
order of 1 cm [e.g. Vassilaros et al. (1980)].

It is of interest to make contact with the non-dimensional tearing modulus introduced
by Paris et al. (1979) to measure the initial slope of the crack growth resistance curve.
Here, to avoid confusion with the T-stress, the tearing modulus will be denoted by TR • Its
definition is

E[dJR ]TR = - .
dL\a da=O

(8)

When expressed in terms of the small-scale yielding variables of the present study and put
into the relevant non-dimensional form, the tearing modulus becomes

By virtue of the discussion given earlier, one sees that computed values of the non-dimen­
sional tearing modulus using the embedded process zone model will depend primarily on
fJj()y (and N). Thus, this quantity may be a particularly appropriate one to use in the
process of identifying fJ to fit a particular set of resistance curve data. Data presented by
Paris et al. (1979) for a wide range of metals show that the tearing modulus tends to scale
with toughness, with the most brittle metals having values of TR on the order of unity and
the toughest steels having values as large as several hundreds. The largest meaningful value
of TR predicted by the present model for a solid with a strain exponent of N = 0.1 is about
100 [cf. Fig. 3 of Tvergaard and Hutchinson (1992)]. These largest predicted values are
somewhat less, by about a factor of two, than the values of TR measured for the toughest
steels, such as the nuclear pressure vessel steel A533B and the steel tested by Hancock et
al. (1991) (ASTM 719 grade A). For reasons discussed below, we do not believe that the
present model, without some modification, can be applied to these toughest materials.

Figure 7, which is drawn from results in Tvergaard and Hutchinson (1992), shows the
computed steady-state toughness and the extent Iss of the steady-state fracture process zone
ahead ofthe tip as a function of fJj()y for two levels ofstrain hardening and for the nominally
high triaxiality case T = O. (The steel tested by Hancock et al. has N = 0.1.) For N = 0.1,
the steady-state toughness becomes very large as fJj()y approaches a value between 3.75 and
4.0; the corresponding value of fJj()y for N = 0.2 lies between 5.0 and 5.5. Note that the
size of the steady-state fracture process zone becomes smaller and smaller relative to Ro as
these same values are approached. The legitimacy ofa model based on a traction-separation
law specified on a line breaks down when Iss becomes too small. For a fracture process
involving void nucleation, growth and coalescence, Tvergaard and Hutchinson found that
there are two regimes of behaviour: (i) Iss is large compared to the void spacing so that the
present line model of the process zone is applicable and (ii) Iss becomes on the order of the
void spacing and the line model must give way to a picture involving interaction between
the tip and one or two discrete voids ahead of it. The second regime is in effect when fJjay
approaches the values listed above. Very tough materials such as the pressure vessel steels
appear to fall into this second regime. It is not clear whether some modification of the present
line model could be used in this regime-the incorporation of some strain dependence to
model the effect of straining on void nucleation, for example. The challenge is to come up
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Fig. 7. Steady-state toughness and length of the fracture process zone as functions of frluy,
for T/u y = 0 and uylE = 0.003. (a) Toughness. (b) Length of the fracture process zone. [From

Tvergaard and Hutchinson (1992).]

with a model of the fracture process which could be embedded within the elastic-plastic
continuum so that crack initiation and growth could be computed for these very tough
materials.
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